
Dynamic memory access monitoring based on tagged memory

Michail Gorelov, Lev Mukhanov, Moscow Institute of Physicsand Technology/MCST

Abstract

Software vulnerabilities become one of the top threats
to world security in the coming decade. The most of such
vulnerabilities are based on memory leaks and memory
corruption. Many memory access monitoring tools exist,
but most of them suffer from high overhead what makes
it impossible to use such tools in the ”real world” soft-
ware projects. The goal of this research is to develop and
investigate a memory access monitoring tool that de-
tects memory leaks and corruption using tagged memory
without reduce of an original application performance.

1 Introduction

Memory corruption bugs remain a serious problem
for type-unsafe languages such as C or C++. For ex-
ample, such vulnerabilities could be used for launching
denial-of-service or cyber attacks [3].

There are several ways to prevent security breaches
from such vulnerabilities. One way is using type-safe
languages as Java. But usually such languages are not
used for developing time-critical software because of
poor performance. Another way is using static tools
to detect memory access bugs. But unfortunately these
tools generate many false positive and false negative er-
rors [2]. Dynamic memory monitoring tools are much
more effective than the static tools [1]. Such tools suc-
ceed in detecting a wide range of memory access errors
but incur high overhead. For example, ”Address Sani-
tizer” (the most advanced dynamic tool used by Google)
detects memory corruption bugs at cost of 73% slow-
down and 3.4x increased memory usage [4].

In this research we present a novel approach to
dynamic memory access monitoring based on tagged
memory. This approach makes it possible to avoid us-
ing of shadow metadata (shadow memory) and there-
fore to reduce overhead significantly. Instead of shadow
memory we propose to use tags that contain informa-
tion about correctness of accessed data. In other words
we suggest that data from redzones would contain a
specific(an incorrect) tag and data from ”good” regions
would contain a correct tag. Each attempt to access to
data with an incorrect tag will cause a program to crash.
Therefore there is no need to build for each memory ac-
cess of a program an additional shadow memory access.
An algorithm of redzones marking in stack, heap, global

objects or dynamic memory is similar to ”Address San-
itizer” algorithm. It should be mentioned that our ap-
proach can be applied to tagged architectures only.

For implementation and experiments we are going to
use Elbrus architecture(a VLIW architecture with tagged
memory). In Elbrus architecture tags are used to detect
incorrect data during speculative execution of instruc-
tions. This is why it would be relatively easy to fit tags
in the dynamic memory access monitoring tool for this
architecture. Now we are implementing the code instru-
mentation phase in Elbrus optimizing compiler (stack
protection has been supported already). Moreover we
hope to apply this approach to our X86 binary compiler
what will allow us to detect memory access bugs in na-
tive X86 applications without special recompilation.

The key contribution of this work is a new approach
that can eliminate dynamic memory access overhead in
real-world applications. We propose the use of tagged
memory instead of shadow memory to control correct-
ness of accessed data. Such approach will allow users
to run any application(even real time applications or
OS) with dynamic memory access monitoring without
slowdown. Moreover we intend to implement this mon-
itoring tool in Elbrus X86 binary compiler on the same
principle.

References

[1] D. Bruening and Q. Zhao. Practical memory check-
ing with dr. memory. InProceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’11, pages 213–223, Washington,
DC, USA, 2011. IEEE Computer Society.

[2] D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive c and c++ memory leak detector. In
Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, PLDI
’03, pages 168–181, New York, NY, USA, 2003. ACM.

[3] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ecc-
memory for detecting memory leaks and memory corrup-
tion during production runs. InIn Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture, 2005.

[4] K. Serebryany, Bruening, A. Potapenko, and D. Vyukov.
Addresssanitizer: A fast address sanity checker. In
USENIX ATC 2012, 2012.

